

Cleveland Utilities WATER QUALITY REPORT - 2023

Water Sources and Protection

Sources of Cleveland's drinking water include surface water from the Hiwassee and Tennessee Rivers, and ground water from limestone aquifers in the area (Waterville Spring). Cleveland Utilities also purchases water from other area utilities to ensure an adequate water supply to the service areas of Cleveland and Bradley County. These utilities include the Hiwassee Utilities Commission and Eastside Utility District.

Our goal is to protect our water from contaminants, and we are working with the State to determine the vulnerability of our water sources to potential contamination. The Tennessee Department of Environment and Conservation (TDEC) and Cleveland Utilities have prepared a Source Water Assessment Program (SWAP) Report including a Wellhead Protection Plan for susceptibility of untreated water sources to potential contamination. To ensure safe drinking water, all public water systems treat and routinely test their water. CU sources have been rated as reasonably susceptible based on geologic factors and human activities in the vicinity of the water source. An explanation of Tennessee's source Water Assessment Program, the Source Water Assessment summaries, susceptibility scorings and overall TDEC report to EPA can be viewed online at https://www.tn.gov/environment/program-areas/wr-water-

<u>resources/water-quality/source-water-assessment.html</u> or contact Cleveland Utilities at 423-559-5277 or 423-478-0698, Monday – Friday between 8:00 a.m. and 4:00 p.m.

Water Operations and Testing

Cleveland Utilities operates 3 water treatment plants which are staffed with state licensed operators. The operations staff is responsible for overseeing the treatment operation and performing quality control checks over all the water produced by these plants. The Environmental and Regulatory Compliance Department is responsible for ensuring that the quality and protection of the drinking water is maintained and is compliant with stringent State and Federal regulations.

Contaminant Information

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline at (800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water:

-Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

-Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming.

-Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

-Organic chemical contaminants, including synthetic and volatile

organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.

-Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA and the Tennessee Department of Environment and Conservation prescribe regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Special Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at 800-426-4791.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Cleveland Utilities is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Cryptosporidium

Cryptosporidium is a microscopic parasite which is found in surface water throughout the U.S. and comes from animal waste and run-off. When ingested, it can result in diarrhea, fever and other gastrointestinal symptoms. Cryptosporidium is eliminated by an effective treatment combination including coagulation, sedimentation, filtration, and disinfection. For more information on Cryptosporidium, contact the Safe Drinking Water Hotline (800-426-4791).

The Environmental Protection Agency (EPA) requires water systems to give consumers an annual report on the quality of their drinking water. CU provides consumers current water quality information by calling 423-559-5277 or 423-478-0698 between the hours of 8:00 a.m. and 4:00 p.m. Monday – Friday or on our web site at <u>www.clevelandutilities.com</u>.

Este informe contiene información muy importante. Tradúscalo o hable con alguien que lo entienda bien.

The Board of Public Utilities of the City of Cleveland generally meets on the fourth Friday of each month at 12:30 p.m. at Cleveland Utilities in the Tom Wheeler Training Center, 2455 Guthrie Avenue, NW, Cleveland, Tennessee.

Cleveland G

2023 WATER QUALITY DATA

<u> </u>											
REGULATED AT THE	DISTRIBU	JTION SY	STEM ENT	RY POINT	(WATER	TREATM	ENT FACILITY	()			
Contaminant (unit)	-	L	_evel Detec	cted	1	Leve	I Detected	мсі	MCI G	Source of Contaminant	
- Sitter (unit)	Analyzed	Yes/No	CFP	WAT	HUC	Analyzed	EUD				
Turbidity (ntu)	2023	No	0.30	0.09	0.19	2023	0.05	TT	NA	Soil runoff.	
Nitrate (ppm)	2023	No	0.309	1.04	0.344	2024	0.317	10	10	Runoff from fertilizer use; Leaching from septic tanks, sewage: Erosion of natural deposits.	
Total Organic Carbon (TOC) (ppm)	2023	No	0.69 ④	(2019) ND	0.84 ④	2023	1.09 ④	TT	TT	Naturally present in the environment.	
	Range	Ne	0.52 - 0.75	2.20	0.56 - 0.96	2022	0.758 - 1.41	NIA	NIA	Face in a stand day of the Unit is a standard to stand	
					2.19	2023	7.30	INA	INA	Erosion natural deposits; Osed in water treatment.	
REGULATED IN THE D		L	Level Detec	cted		Leve	I Detected				
Contaminant (unit)	Analyzed	Violation Yes/No		CU	HUC	Analyzed	EUD	MCL	MCLG	Source of Contaminant	
Total Trihalomethane (TTHM) (ppb)	2023 ②	No	Highest LRAA Range	48.1	25.1	2023	38.1	80	NA	By-product of drinking water chlorination.	
			Highest	3.1 - 40.0	10.0	2022	20.59				
Haloacetic Acids (HAA5) (ppb)	2023 ②	No	LRAA Range	43.1	18.8	Range	9.51 - 27.0	60	NA	By-product of drinking water chlorination.	
Total Coliform (mpn/100ml)	2023	No	Daily	0	(Monthly) 0	Daily	0	TT	NA	Naturally present in the environment	
E.Coli (mpn/100ml)		No		0	0	2023	0	*See Definition	0	Human and animal fecal waste	
Lead (ppb)	2023 ③	No	90 th percentile	< 2.0	< 2.0	2023	90th $% = 2.32$	AL = 15 (0	Corrosion of household plumbing systems; Erosion of natural deposits.	
			Range	All Sites < 2.0	All Sites < 2.0	Range	< 2.0 - 9.10				
Copper (ppm)	2023 ③	No	90 th percentile Range	0.112	0.00422 < 0.001 -	2023 Range	90th % = 0.0848 0.00756 -	AL = 1.3 1.3	1.3	Corrosion of household plumbing systems; Erosion of natural deposits; Leaching from wood preservatives.	
Chlorine (ppm)		Ne	Highest RRA	1.7	0.00422	2023	0.158	MRDL MR 4.0 4	MRDLG	Water additive used to control microbes.	
	2023	NO	Range	0.5 - 2.5	1.6 - 2.1	Range	0.70 - 2.49		4.0		
Fluoride (ppm)	2023	No	Highest RRA	0.70	0.75	2023	0.69	4.0	4.0	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and	
		BUTION		0.17 - 0.72	<0.13 - 0.74	INTOME	0.01 - 0.80			auminum factories.	
UNREGULATED AT T		BUTION	evel Deter	rted	INT AND CO		Detected				
Contaminant (unit)	Analvzed	-	CU	WAT	HUC	Analyzed	EUD	Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated			
Manganese (ppb)	2019	Average	0.83	ND	5.5	Not	t Reported				
Haloacetic Acids		Range	NA	NA 2.1	NA			occurrence of unregulated contaminants in drinking water and whether future regulation is warranted. UCMR minimum reporting			
(HAA6) (ppb)	2019	Range	< 0.30 - 2.94			Not Reported		levels (MRLs) were established based on the capability of the analytical method, not based on a level established as "significant" or "harmful." In fact, the UCMR MRLs are often below current "health reference levels" (to the extent that HRLs have been established).For additional information coll the Sefe Dirichian Water Harting at (#000			
Haloacetic Acids (HAA9) (ppb)	2019	Average	21.2			Not Reported					
Perfluorobutanoic Acid	2022	Average		0.96 - 32.2 NR			0.0112	additional information call the Safe Drinking Water Hotline at (80 426-4791 or Cleveland Utilities at (423) 478-0698.		r Cleveland Utilities at (423) 478-0698.	
(PFBA) (ppb)	2023	Range				NA					
The table above indicate indicated are additional substance or matter in w	es 'contarr 'contamina vater inclu	ninants' th ants' for w ding chen	at were det which tests v nicals used	ected (No were condu during trea	Total Colifo icted and n atment.	orm/Ecoli ot detect	Detections) in ed. "Contamina	Cleveland' ant" means	s water sup any physic	oply and are required to be reported. Not al, chemical, biological, or radiological	
$\textcircled{0}$ = 100% of CFP samples were \leq 0.3 NTU. 100% of WAT samples were $<$ 0.3 NTU. 100% of HUC samples were \leq 0.3 NTU. 100% of EUD samples we											
③ = Analysis must be p 2026. 100% of the sites	performed tested for	again prie Lead and	or to the en d Copper in	d of Septer the CU, H	mber 30, 20 UC, and El)26 (3 yr JD syster	cycle). HUC Ar ms were below	nalysis mus the Action	st be perfor Level.	med again prior to the end of September 30,	
(4) = Plants have met the TT requirements for TOC in 2023. Average is the maximum quarterly average from running annual averages of treated water. Range is the minimum to maximum of individual samples											
*MCL Definition for E.C positive routine sample	coli: Routi or system	ine and re fails to ar	peat sampl alyze total	es are tota coliform-po	l coliform-p ositive repe	ositive ar at sample	nd either is E. e for E. coli.	coli-positive	e or system	fails to take repeat samples following E. coli-	
MCL (Maximum Contaminant Level) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology											
MCLG (Maximum Contaminant Level Goal) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.											
MRDL (Maximum Residual Disinfectant Level) = The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of disinfectant is necessary for the control of microbial contaminants.											
MRDLG (Maximum Res not reflect the benefits o	idual Disir of the use o	of disinfect	evel Goal) = ctants to co	= The level	of a drinkir pial contam	ng water inants.	disinfectant be	low which t	here is no	known or expected risk to health. MRDLGs do	
TT (Treatment Technique) = A required process intended to reduce the level of a contaminant in drinking water.											
AL (Action Level) = The	concentra	ation of a	contaminan	nt which, wh	nen exceed	led, trigge	ers a treatment	or other re	quirement	which a water system must follow.	
AL (Action Level) = The ppm = part per million, liter, RRA = Running An	ppb = par nual Aver	ation of a t per billic age, ND =	contaminan on, NTU = = Not Detec	nt which, wh Nephelome ted, NR = I	nen exceed etric Turbidi Not Require	led, trigge ity Units (ed, NA =	(Measure of W Not Applicable	or other re ater Clarity	equirement /), MPN = I	which a water system must follow. Nost Probable Number, pCi/I = picocuries per	

WAT = Waterville Springs (Ground Water) **CFP** = Cleveland Filtration Plant (Surface Water) EUD = Eastside Utility District (Surface Water)

Cleveland Utilities WATER QUALITY REPORT – 2023 CONSUMER INFORMATION

Backflow Prevention

Cleveland Utilities makes every effort to ensure that our customers enjoy a continuous supply of safe drinking water. We also need the help of our customers in this regard, particularly with controlling cross connections.

A cross connection is a link with the public water supply and can cause the water system to become contaminated. An example of a cross connection would be a garden hose submerged in a source of contamination such as a car radiator, swimming pool, or other liquid. Should a water main break occur or a fire pumper use a nearby hydrant while the hose was submerged in a source of contamination, the contaminant could be sucked back into the public water supply. This is called backflow, and it can be prevented easily.

One simple way to avoid backflow is to create an air gap between the end of your hose and any other liquid source. For example: if you're filling a pool, arrange your hose so that the end is at least six inches above the top rim of the pool. The air gap will prevent the contaminant from being sucked back into the water supply.

Wrong Way

Right Way

Another way to prevent backflow with a garden hose is to use a device known as a vacuum breaker. Vacuum breakers are available at hardware and home improvement stores. They are simple, inexpensive, and screw right onto your outside faucet to prevent contaminants from being siphoned back into your plumbing and the public water system.

Vacuum Breaker

Cross connections that are more hazardous and that have permanently installed plumbing, such as irrigation systems, require more sophisticated devices known as reduced pressure backflow preventers. These more protective devices must be tested annually to ensure they are operating properly. Any residence with an irrigation system must be equipped with this type of device.

Example Installation of Irrigation Backflow Preventer

For more information on preventing cross connections, installing backflow devices and protecting your water supply, please feel free to contact our compliance department at 423-478-0698.

Unused Pharmaceutical Disposal

Flushing unused or expired medicines can be harmful to your drinking water. Properly disposing of unused or expired medication helps protect you and the environment. Keep medications out of Tennessee's waterways by disposing in one of our permanent pharmaceutical take back bins. There are over 340 take back bins located across the state in all 95 counties, to find a convenient location please visit: http://tdeconline.tn.gov/rxtakeback/

The "Take Back" bin in Bradley County is located at: Bradley County Sheriff's Office 2290 Blythe Avenue SE Cleveland, TN 423-738-7349 8-4; M-F

